
For-Profit Library
How I Learned to Stop Worrying and Love Gleam

Benji

Background

We're all familiar with this. Well, the best way to make anything on for these and their brothers and sisters—the Mac, the Vision Pro, the
Apple Watch, the iPad if you must—is

SwiftUI. It's the shit. Look at this:

That's a whole app in SwiftUI, with a beautiful interface, live camera feed, and orientation detection with the gyroscope. By comparison...

npx create-next-app@latest
14 files, 1995 lines

You've got Next.js,

rails new
63 files, 1357 lines

you've got Rails, which makes vastly more files but still leaves you with less code.

npx sv create

You've got Svelte, right, which writes on its website the definition of that word, meaning "attractively thin, graceful and stylish."

npx sv create
1457 files, 893133 lines

So yeah. And that's not even touching on the fact that these frameworks only cover a patchwork of features and are written in such lovely
languages as those that invented the triple-equals mark to fight their demons.

Why is this a problem?

There are super stupid measurements and done totally haphazardly with tokei mostly to prove a point. In particular if you generate a
Svelte app with Deno it's actually the smallest at only 143 lines. But nevertheless:

I fundamentally do not want to manage someone else's code. I am responsible for everything that lives in my repository—by implication,
everything there should be present for a reason, something I can only be familiar with having written it myself. When using these

frameworks that's not the case.
I am not saying you should not have dependencies. I am saying that dependencies should be self-contained interfaces and not leaky

abstractions.
These frameworks somehow manage to combine the disadvantages of having remote dependencies with the disadvantages of vendoring.

And I hate to beat a dead horse but this is not the case with SwiftUI.
And all of this has lead me to the really popular approximation that everyone's referencing these days and people think is really cool

framework quality ∝∝∝∝ (1 / files i didn't make)
https://fosstodon.org/@FIGBERT/113683895559149910

Benji's Law of Frameworks. And beyond that, it lead me to a really dark place.

maybe i can just use rails in one file

sinatra, roda, phlex...

literally swiftui in the browser

the fundamentally good shores

Most concisely: the problem with FastHTML is that it over-indexes on the rapid prototyping phase, but doesn't provide an escape hatch for
when that's done and you want something elegant and maintainable.

near misses with perfection

12 files, 292 lines

here be dragons

and even places where no man had before ventured.

Keith And The Big Lie

Which was something like "you should try this cool new language that is inspired by Elm with a syntax like Go." I can't imagine a better
sentence for me on this quest.

That language was Gleam. Keith has never programmed in Gleam.

For the last three days, I have. But what have I been building? Many people don't know this about me, but when I'm not a programmer, I'm
actually

a librarian. I own a bookstore—that's me.
It's fun! It's called "Blind Date A Book" and the gimmick is that you have no idea what book you're getting, you just read a one-sentence

description and buy based on that.
My initial plan was to build this AI hyperscaling monstrosity but I couldn't figure out how to dropship books so I just asked my friends for

their favorite books and to write pitch and made a website based on that. When people order I run out to the bookstore and ship them
everything manually.

It's going really well!

Hmmm. No one knows this exists. And I'm paying $40/month to Shopify to run my checkout!!
My for-profit bookstore is making quite nearly -$500/year. Bad.

And the website is slow because I made it with Web Origami which is a really weird tool, as previously stated.

Gleam

So Gleam! Remember that, from five slides ago? I rewrote the website in Gleam. A few things to know about Gleam that I found out the hard
way.

1. No loops

Only recursion.

2. No if statements

Just exhaustive switch statements.

3. No lists*

Or rather, no arbitrary indexing into lists. So perhaps better stated, no lists as they are often/traditionally understood.

4. This weird thing
fn example(callback: fn(Int) -> Nil) -> Nil {
 callback(3)
}

fn main() -> Nil {
 use int <- example()
 io.println(int)
}

Demo
Cool things I will try and talk about:

Elm architecture1.
Epic types2.
"One Path" (unofficial)3.
FFI4.

Frameworks used:

lustre (html)1.
sketch (css)2.
glen (server)3.

